
4.

(D Distributed Decomposition of Block-Angular Linear Programs
on a Hypercube Computer*N

DTIC
SELECTE JamesK.Ho
DEC 27 1989 S. Kingsley Gnanendran

0P D J O-j Management Science Program
College of Business Administration

University of Tennessee
Knoxville, TN 37996-0562

July, 1989

M' D LW.._PJ1nTON ST.ATE N?., A
Approved for pubic release!

Ditrunon Unzited

*Research supported in part by the Office of Naval Research under grant N00014-89-J-1528.

89 12 26 254

Abstract
Algorithms based on the Dantzig-Wolfe decomposition principle for linear programs are

implemented on an Intel iPSC-2 Hypercube computer with 64-processors. Computational results

with block-angular linear programs from diverse applications are reported. They indicate that the

approach of distributed computation on relatively inexpensive multiple processor computers may be
very cost-effective for large, structured linear programs. It is also shown that by studying certain

characteristics of the interaction among the master and subproblems, one can select algorithms that

best exploit the parallel processing environment.

Keywords: Large-Scale Systems; Linear Programming Decomposition; Parallel Processing.(j
Hypercube Computers.

* .

1. Introduction

Many complex systems consisting of independent subsystems coupled by global constraints
can be modeled as linear programs with the block-angular structure. The decomposition principle of
Dantzig and Wolfe [1] leads to algorithms that transform the original problem into a sequence of
subproblems corresponding to the uncoupled subsystems. The subproblems are coordinated by a
master problem corresponding to the global constraints through primal (proposals) and dual (prices)
information. While it has been obvious that the subproblems can be solved simultaneously for
algorithmic efficiency, it is not until recently that advances in computer technology make such an
approach realizable.

Advances in VLSI (very large-scale integration) for digital circuit design are leading to much
less expensive and much smaller computers. They have also made it possible to build a variety of
"supercomputers" consisting of many small computers combined into an array of concurrent
processors. We shall refer to such an architecture as multicomputers. Each individual processor is
called a node. At this writing, multicomputers with up to 128 nodes are commercially available from

at least half a dozen manufacturers. Typically, the nodes are the same kind as those used in
high-end microcomputers and are relatively inexpensive. Significant computational power can be
obtained by making many of them work in parallel at costs that are much lower than an equivalent
single processor. Obviously, the effectiveness of the approach depends on whether an application
can be reduced to a well-balanced distribution of asynchronous tasks on the nodes. Linear

programming decomposition fits naturally into this framework.
In [6], initial experience of implementing Dantzig-Wolfe decomposition on an experimental

multicomputer, the CRYSTAL system [2] at the University of Wisconsin-Madison was reported.
On the completion of that phase of our work, commercial multicomputers are already becoming

available. These are supported by major vendors and are expected to become prevalent in the
foreseeable future. For that reason, we have continued our research on a particularly popular
architecture, the hypercube. Since we have much better control over the computing environment
than in the earlier experimental system, considerable improvement in the measurement of
performance as well as the comparison of results is achieved. In this paper, we describe briefly the
hypercube environment and the design of the LP decomposition code DECUBE which runs on
Intel's iPSC-2 Hypercube with 64 processors. Computational results on problems from diverse
applications are reported. It is also shown that by observing certain patterns in the interaction among
the master and subproblems, one can predict the efficiency of algorithmic strategies designed to
exploit parallel processing.

\ ...] .. ,..... .

A.

2. Hypercube Multicomputers

This architecture is essentially a network of 2n processors interconnected in a binary n-cube

(or hypercube) topology. The connections for n <4 are illustrated in Figure 1. Each processor (or

node) has its local memory and runs asynchronously of the others. Communication is done by
means of messages. A node can communicate directly with its n neighbors. Messages to more

distant nodes are routed through intermediate nodes. The hypercube topology provides an efficient

balance between the costs of connection and the benefits of direct linkages. Usually, a host
computer serves as an administrative console and as a gateway to the hypercube for users.

n=0 0
n= I ... •

n=2n
n 2

Figure 1. Hypercubes of dimension n <4.

For the work reported in this paper, we used an Intel iPSC/2 d6 with 64 nodes at the Oak

Ridge National Laboratory. Each node consists of Intel's 32-bit 80386 CPU (4 MIPS) coupled with

a 80387 (300 Kflops) numeric coprocessor for floating point acceleration. It has 4 MBytes of local

memory. The hypercube (or Cube) is accessed via a host (or System Resource Manager) which is

also a 80386-based system with 8 MByte memory and a 140 MByte hard disk. The operating

system on the host is the UNIX System V/386 (Release 3.0). The data transfer rate between the

System Resource Manager and the Cube has a peak value of 2800 KBytes/sec.

Although the nodes are physically connected as a hypercube, a trade-marked routing network

called DIRECT-CONNECT provides essentially uniform communication linkages among all the

nodes. The earlier "store and forward" method used in first-generation hypercubes is replaced by a

2

hardware switching system, the Direct-Connect Module (DCR) on each node. Each DCR provides
seven full-duplex channels for internodal communication and one for connection to the System
Resource Manager or I/O devices. The network uses a special algorithm for messages longer than
100 bytes. It first sends a header message to the destination node. This header sets gates in each
DCR on the intermediate nodes to clear a data path for the message. Once communication with the
destination node is established with acknowledgment of receipt of the header, the message is send
through at essentially hardware data transfer rates. The implication of this improved technology is
that computational efficiency is essentially independent of the problem domain to machine topology
mapping. The hypercube can be programmed as an ensemble of processors with an arbitrary
communications network in which each node can communicate more or less uniformly with all

other nodes.
The host machine allows the user to perform the following tasks.

i) To edit, compile and link host/node programs.
ii) To access and release the cube (or a partition thereof).

ii) To execute the host program.
iv) To start or kill processes on the cube.

Operations peculiar to the hypercube are controlled either by UNIX-type commands (iPSC/2
commands) or by extensions to standard programming languages such as Fortran and C (iPSCf2
routines). The iPSC/2 commands are used to gain access to the cube, to load, start or kill cube
processes and to relinquish access to the cube. These commands may be input from a terminal or
they may be invoked using a shell script. The iPSC/2 routines, on the other hand, are mainly used
to manage intemodal messages. Nevertheless, it should be noted that almost all of the tasks that can

be performed with iPSC/2 commands can also be accomplished from within the user programs by
iPSC/2 routines with similar names. The iPSC/2 commands and routines for the Fortran

programming environment are documented in [12].
To execute a typical parallel program, the following steps are used.

I) Compile and link the host and node programs to create executable modules.
II) Obtain a partition of the cube (a subcube) of suitable size by invoking the GETCUBE

command. The user has the option of providing a name to identify this partition. For

example, the command

% getcube -c sugar -t d3

allocates to the user an exclusive subcube named sugar with dimension 3 (i.e. 8 processors)

identified by the node numbers 0, 1, ..., 7.
III) Run the host program by invoking the name of the executable host module. Node programs

are loaded on to the appropriate nodes at runtime in response to calls to the LOAD subroutine
in the host program.

3

IV) On termination, kill all node processess and flush messages by invoking the KILLCUBE

command.

V) Relinquish access to the subcube by the RELCUBE command.

Internodal and host-to-node communication is done by subroutine calls in the corresponding

programs. The subroutine to send messages is called CSEND. Its arguments are:

- message type (ID)

- message location (address)

- message length in bytes

- destination node ID

- destination process ID.

The subroutine to receive messages is called CRECV. Its arguments are:

- message type (ID)

- address of buffer for storing message

- length of buffer in bytes.

Both CSEND and CRECV are blocking commands in the sense that the calling process halts until

the message has been transmitted and received, respectively. Non-blocking versions of these

commands are also provided as ISEND and IRECV respectively.

Other features necessary for our purpose are the following functions:

IPROBE() - indicating whether a message of a particular type has been received;

MYHOST() - indicating the node ID of the host;

MCLOCK() - returning elapsed times on the nodes and CPU times on the host; and

MSGWAIT() - blocking the calling process until the outgoing message has been copied to

the operating system buffer.

3. DECUBE: an LP Decomposition Code on the Hypercube

As the building blocks of our parallel implementation, we use DECOMP: a Fortran code of

the Dantzig-Wolfe decomposition algorithm. This code was first assembled in 1973 by Carlos

Winkler at the Systems Optimization Laboratory at Stanford University. It was based on John

Tomlin's LPM1 code of the revised simplex method. Since then, DECOMP has been extended and

improved over a number of years by James Ho and Etienne Loute at the Center for Operations

Research and Econometrics in Belgium. It was used extensively in empirical studies (see e.g. [81)

and as prototype for more advanced, commercial software based implementati, ns (e.g.

4

DECOMPSX in [7]). A comprehensive documentation of DECOMP is given in [10].

The Dantzig-Wolfe decomposition algorithm (see e.g. [1], [4], [7]]) is assumed well known
and its description is omitted here. While many refined features have been used to make DECOMP
computationally efficient and robust, we list below only the major ones. Since all of these
techniques are also used in the advanced implementation DECOMISX described in [7], the reader
may refer to that paper for further details.

i) Data is disk resident. The LP to be solved (either the master problem or a subproblem) is
read into memory. Subsequent modifications are written to disk.

ii) All matrices are stored in sparse form using column packing. The coupling coefficients for
the variables of a subproblem are included in that subproblem as nonbinding constraints
whose updated right-hand-side gives a proposal to the master problem.

iii) The prices 71 are incorporated directly into the dual variables of the subproblems without
actual modification of its objective function.

The basic idea behind the design of DECUBE is to process the master and subproblems
asynchronously on the nodes of the hypercube. In the current version, each subproblem is assigned
to one node and the master problem is also handled by a dedicated node. To allow for situations
where there are more subproblems than nodes, later versions will have built-in mechanisms to

distribute the subproblems appropriately. All relevant data for a subproblem will be core resident on
its node. Coordinating information between the master and subproblems in the form of prices and
proposals is communicated as internodal messages. Although DECUBE contains several
environment-specific statements (such as communication primitives), its modular design makes
adaptation to other distributed-memory machines relatively straightforward.

DECUBE consists of three Green Hills Fortran ([12], [13]) programs: Host, Master and

Sub. The host program runs on the host machine and is the process that controls the entire parallel
program. The master program solves the Dantzig-Wolfe restricted master problem and runs on node
0. The sub program solves a Dantzig-Wolfe subproblem and runs on nodes 1, 2, ..., LMAX where

LMAX is the number of blocks in the block-angular linear program. The master program and
LMAX copies of the sub program are loaded onto the appropriate nodes at runtime in response to

calls to the LOAD subroutine in the host program.
In the following tables, we describe the various modules which make up the host, master and

sub programs.

5

Tve Name Function

Communication COMM Open 1/O files and set process ID;

load master and sub programs to appropriate

nodes.

SNDDAT Send an MPS data section to a specified node.

RCVTRM Receive information on problem status from

master node on termination of decomposition
algorithm;
receive timing information from all nodes.

WRAPUP Close I/O files;

kill all cube processes.

Input INDATA Driver for reading LP data from a DECOMP

formatted file [10].
INPUT Read an MPS data section.

Output STATS Print problem status;

compute and print performance measures.

GRAPH Create a graphics interface file for proposal

dispersion charts.

Table 1. Subroutines of the host program.

6

Type Name Function
Communication COMM Open output file; set process ID.

RCVDAT Receive relevant MPS data section from host.
RCVPRP Receive proposals from subproblem nodes.
SNDPRI Send prices to subproblem nodes.
SNDRHS Send Phase 3 right-hand side allocations to

subproblem nodes.
SNDTRM Receive proposal generation statistics from

subproblem nodes; send timing data and problem
status to host.

Decomposition IN1T Initialize arrays, counters.
INIMAS Setup initial master problem.
SLVMAS Driver for the prices generation process (receive

incoming proposals, check optimality, activate
simplex algorithm to solve the restricted master

problem, and send prices.)
PACK Incorporate new proposals into master problem;

purge "obsolete" proposals periodically.

Revised Simplex BTRAN Backward transformation for prices.
CHSOL Check accuracy of solution.
CHUZR Ratio tests for column to leave basis.
FORMC Check feasibility.
FTRAN Forward transformation for updated column.
INVERT Refactorization of the basis.
ITEROP Print information on simplex iteration.
NORMAL Driver for Primal Revised Simplex method.
PRICE Pricing for column to enter basis.
UNPACK Unpack a column in the LP matrix.
UPBETA Update solution.
WRETA Update basis factorization.

Phase 3 RESULT Driver for reconstruction of primal solution to LP.

UNRAVL Output solution.

Table 2. Subroutines of the master program.

7

Tye Name Function
Communication CoMM Open output file; set process ID.

RCVDAT Receive relevant MPS data section from hosL
RCVPRI Receive prices from master node.
SNDPRP Send proposals to master node.
RCVRHS Receive Phase 3 right-hand side allocation from

master node.
SNDTIM Send timing data to host.
SNDGEN Send proposal generation statistics to master node.

Decomposition INIT Initialize arrays, counters.
COPY Copy initial proposal to proposal buffer.
SLVSUB Driver to control proposal generation process

(receive prices, solve subproblem, and send

proposals to master node).
CHECK Candidacy test for proposal generation.
POLICY Set parameters for proposal generation process

according to user-specified strategy.

Revised Simplex (Same procedures as in the master program)

Phase 3 RESULT Driver for reconstruction of primal solution to

subproblem.
UNRAVL Print solution of subproblem.

Table 3. Subroutines of the sub program

All statements peculiar to the hypercube have been isolated into separate subroutines. These
are the subroutines of the communication type in the above Tables. To adapt DECUBE to a different
distributed-memory environment, the user needs only to replace the primitives in these subroutines
(such as CRECV, CSEND, IPROBE, LOAD, MYHOST, SETPID, KILLCUBE) with equivalents
if available. If exact equivalents are not available, these same subroutines calls may be used to
invoke user-written subroutines built upon more basic primitives in the new environment.

The following is a pseudo-code description of DECUBE in what will be referred to as the
standard version. Variations of this scheme will be implemented to accomodate different strategies
made possible by parallel computation.

8

DECUBE: Host Program

Step 1: Data Input
1.1 Read master problem data and send to node 0.
1.2 For i = 1 to LMAX,

1.2.1 read data of subproblem i;
1.2.2 send data to node i;

Step 2: Output
2.1 Receive problem status and timing data from node 0.
2.2 Receive timing data from nodes 1 to LMAX.
2.3 Compute performance measures.
2.4 Print problem status and performance measures.

2.5 Stop.

DECUBE: Master Program

Step 1: Initialization

1.1 Wait to receive master problem data from host.
1.2 Wait to receive initial proposals from subproblem nodes.
1.3 Incorporate initial proposals into master problem.

Step 2: Iterations

2.1 Phase 1
2.1.1 Set Phase 1 objective.
2.1.2 CYCLE (see below) until termination.

2.1.3 If infeasible, stop.

2.2 Phase 2

2.2.1 Set Phase 2 objective.
2.2.2 CYCLE until termination.
2.2.3 If unbounded, stop.

Step 3: Phase 3
3.1 Compute allocations for subproblems.
3.2 Send allocations to suproblem nodes.

3.3 Output master problem solution.

3.4 Stop.

CYCLE:
C. I Set flag to 'continue'.

C.2 Solve master problem. Exit CYCLE if unbounded.
C.3 If [primal-dual gap < tolerance] or (no more proposals],

set flag to 'done'.

9

C.4 Send price buffer and flag to all subproblem nodes.

C.5 Exit CYCLE if flag = 'done'.
C.6 Wait to receive proposals from all subproblem nodes.

C.7 Incorporate proposals into master problem.

C.8 Return to C.2.

DECUBE: Sub Program

Step 1: Initialization

1.1 Wait to receive subproblem data from host.
1.2 Solve subproblem.

1.3 If infeasible, stop;

else generate proposal.

1.4 Send proposal to master node.

Step 2: Iteration

2.1 Wait for prices and flag from master node.
2.2 If flag = 'done' go to Step 3; else solve subproblem.

2.3 Generate proposals, if any.

2.4 Send proposals to master node.

2.5 Return to 2. .

Step 3: Phase 3
3.1 Receive allocation from master node.

3.2 Compute subproblem solution.

3.3 Output subproblem solution.

3.4 Stop.

Apart from specific adaptation to the hypercube environment, the design of DECUBE is very
similar to that of DECOMPAR [6] which ran on the experimental multicomputer known as

CRYSTAL [2] until the latter system became obsolete and went out of commission. While
DECOMPAR provided valuable initial results, DECUBE benefits from a much better controlled

computing environment and allows very accurate measures of performance of new techniques in LP

decomposition using parallel processing. Currently, DECUBE is dimensioned for block-angular
LP's with up to 30 subproblems, each with up to 1200 rows, 4000 columns and 200,000 nonzeros

for coefficient matrix and basis data. The master problem can have up to 200 rows besides the

objective and convexity rows. In terms of total problem size, DECUBE can handle up to 30,000
rows, 120,000 columns and 3.6 million non-zeros in the coefficient matrix. These dimensions can

be further extended within the system configuration described in § 2.

10

4. Performance Measures

The primary purpose of parallel processing is to speed up computing time relative to

conventional sequential computation. Assuming that a number of processors (p) are available and

allocated to the problem on hand, we seek to compare the parallel time utilizing multiple processors

with the sequential time on one processor. The parallel time is the duration from start to finish of the

solution process. In terms of CPU times, we are therefore interested in the disjoint union (i.e

nonoverlapping total) of CPU times on all the processors. This is denoted by TPAR. The sum of all

CPU times is used as a lower bound on the sequential time. This is the least amount of time

required to solve the same problem by one processor (assuming that a single processor can indeed

handle all the tasks without additional resources). It is denoted by TSEQ. The speedup (S) in using

p processors instead of one is given by TSEQ/TPAR. The eficiency (E) is given by S/p.

Actual sequential time is likely to be much higher than TSEQ. For example, in linear

programming decomposition, the entire problem is usually too large to fit in the local memory of a

single processor. The data will have to be disk resident (as with DECOMP described above) and the

appropriate portion fetched into memory as required. This will naturally increase the total solution

time significantly. Therefore by using TSEQ as a basis of comparison, the speedup measures that

we obtain for DECUBE are conservative and tend to underestimate actual performance

improvements.

In [3], [5] and [14], various information schemes to control the coordinating process of LP

decomposition were analyzed and tested using DECOMPAR. Based on those earlier results, we

have implemented two schemes in DECUBE. The first is known as the Basic Information Scheme

(BIS) and is a straightforward parallelization of the Dantzig-Wolfe decomposition algorithm. The

master problem determines prices (n) on the coupling constraints while the subproblems are idle.

With these prices, the subproblems are processed concurrently to generate proposals while the

master problem is idle. An illustration of this information scheme with three subproblems is shown

in Figure 2. In this and the following figure, the black rectangles are used to denote the busy time of

the master problem, and the shaded rectangles the busy time of the subproblems. The white areas

denote idle time. By nature of the decomposition algorithm with the basic information scheme, the

theoretical limit of E is not 1. This is because a cycle in the algorithm consists of first a master

problem and then the subproblems. Only the latter are processed in parallel in BIS. Suppose a

problem with r blocks takes t cycles in which the average time for the master is m and the average

time for a subproblem is s. Then the total sequential time is approximately t (m + rs). The total

parallel time using one processor for each of the master and subproblems is approximately t (m+s).

Therefore, letting p = r + 1, we have

E - (m + r s)(m + s)(r + 1).

For m close to s, E - 1/2.

11

R 2

Ma=~-
Sub 1
Sub 2
Sub 3

Cycle 1

so Elasped Time

Figure 2. Basic Information Scheme (BIS)

R 2 R3

Master

Sub 1
Sub 2
Sub 3 IL 1

Cycle I

SElasped Time

Figure 3. Early Start Information Scheme (ESIS)

In general, many proposals may be generated by a subproblem during a cycle. Their arrivals

are dispersed over the busy period of the subproblem. Therefore, instead of letting the master

problem remain idle until all the subproblems are done, we can have it started as soon as the first

proposal becomes available. Note that eventually, the master would have received the same set of

proposals for a particular cycle as in BIS. The only difference is that it gets a head stam. We call this

the Early Start Information Scheme (ESIS). The early processing of proposals to determine new

prices does not guarantee solving the master problem faster. It may even require more time than

starting the process after all the proposals are received. However, it is hoped that the overall cycle

time would be shorter due to increased concurrency between the master and subproblems. Note that

12

the proposals and prices generated in ESIS are identical to those in BIS. Therefore, any effect that

ESIS may have on the elapsed time of the solution process is not due to the information but the

early processing of the proposals. An obvious case in which ESIS is superior is illustrated in Figure

3. Comparing Figures 2 and 3, we see that although the time required to generate X2 in ESIS is
longer than that in BIS, the overall time for cycle 1 is shorter. It is of course conceivable that the

early start might lead to a much longer solution path to X2 so that the cycle time turns out to be

longer than that in BIS.

Other information schemes involve sending intermediate prices from the master problem to
the subproblems and have the latter generate new proposals according to the more frequently

updated prices. However, initial empirical results showed that any benefit from such improved

feedback of information tend to be offset by the additional volume of information to be processed.
As a result, such intermediate prices information schemes rarely outperform BIS or ESIS. For this

reason, we have included only BIS and ESIS in the current version of DECUBE.

Let the parallel time with BIS be denoted by TPAR(BIS). From this we can obtain an upper

bound on the potential improvement with ESIS. Since the best we can hope to do is to have all the
master problem times overlap with the subproblem busy periods, TPAR(BIS) minus all the master

problem times gives a lower bound on TPAR(ESIS), the actual parallel time using ESIS. It turns

out we can predict to a certain extent how well ESIS will do by studying the timing pattern of the
problem as represented in Figure 2. This will be demonstrated in the next section where we

compare TSEQ, TPAR(BIS) and TPAR(ESIS) for a diverse collection of block-angular linear

programming models.

5. Computational Results

The experiments were organized around three sets of test problems for the following

purposes:
I) to validate DECUBE and observe speedup and efficiency measures for a collection

of small to medium size test problems from diverse applications;

UI) to apply knowledge from (I) to predict the performance on new applications; in

particular, two planning models in electric power generation [3]; and

I) to test DECUBE on large problems from a material requirements planning model [9]

and to compare with conventional software.

For experiment (I) ten small to medium size test problems comprising what we call the

standard set are used. Their characteristics are listed in Table 4.

13

Problem Blocks Rows Columns % Density

Actual Natural Coupling Total

DEEPI 6 6 16 101 265 19.0

•DEEP2 4 4 11 101 226 18.9

MEAT12 6 12 46 381 692 1.3

MEAT31 8 31 11 384 961 1.3

MEAT43 9 43 16 648 1253 0.7

FORESTRY 6 6 11 402 1005 1.0

SCORPION 6 6 45 389 747 0.7

DYNAMICO 5 10 10 678 1176 0.7

MRP3 3 3 31 301 823 0.9

MRP5 5 5 61 961 2701 0.4

Table 4. Characteristics of the Standard Test Problems

DEEP 1 and DEEP2 are randomly generated problems with dense blocks. All the others are

from real applications. The MEATxx examples are for multiproduct ingredient mix optimization in

the meat processing industry. FORESTRY is from a forest management model. SCORPION is

from a French energy model. DYNAMICO is a model of world trade and development from the

United Nations. MRP3B and MRP5B are material requirements planning problems in production

management. The column counts in Table 4 include one logical column per row. For some

problems, several natural blocks are grouped together to reduce the actual number of subproblems

required. Tables 5 and 6 record the performance of DECUBE on the standard problems with BIS

and ESIS respectively. The average efficiency is 36.6% for BIS and 38.5% for ESIS. The last

column in Table 6 gives the ratios of these efficiencies as a measure of improvement of ESIS over

BIS. Note that while the average improvement is only about 5%, it will be of practical interest to

identify both favorable and unfavorable applications for ESIS. To a certain extent, this can be

achieved by studying the proposals generation pattern of the subproblems and the relative

complexities of the master and subproblems. The timing statistics from DECUBE with BIS are used

to plot the time at which each proposal is generated as well as the duration of each master problem.

This is called a BIS chart of the problem. Figure 4 shows the chart of a favorable case:

DYNAMICO. The master and subproblem times are comparable and the proposals are evenly

dispersed. These are indications that a significant portion of the master times can be made

concurrent with subproblem busy times. An unfavorable case, MEAT12 is shown in Figure 5. Here

the master times dominate and starting early does not help. For similar reasons, the reverse situation

of trivial master times is also unfavorable for ESIS. Note that the BIS charts can also be constructed

with timing data from a sequential implementation of decomposition such as DECOMP.

14

PROBLEM p TSEQ TPAR(BIS) SPEED-UP EFFICIENCY

(CPU seconds) TSEO/TPAR (%)
DEEPI 7 31.87 18.78 1.70 24.24

DEEP2 5 21.27 11.66 1.82 36.46
MEAT12 7 64.74 45.98 1.41 20.11

MEAT31 9 14.20 4.45 3.19 35.41
MEAT43 10 21.55 5.36 4.02 40.23

FORESTRY 7 84.13 29.55 2.85 40.68

SCORPION 7 8.30 2.63 3.15 45.03

DYNAMICO 6 116.20 39.44 2.95 49.10
MRP3 4 18.54 11.24 1.65 41.23

MRP5 6 193.35 96.23 2.01 33.49

Average: 36.60

Table 5. Performance of DECUBE(BIS) on Standard Problems

PROBLEM p TSEQ TPAR(ESIS) EFFICIENCY ESIS/BIS

(CPU seconds) (%)
DEEPI 7 31.87 22.07 20.63 0.85
DEEP2 5 21.27 9.40 45.25 1.24

MEAT12 7 64.74 41.71 22.17 1.10
MEAT31 9 14.20 4.31 36.58 1.03
MEAT43 10 21.55 5.07 42.52 1.06
FORESTRY 7 84.13 29.44 40.82 1.00

SCORPION 7 8.30 2.59 45.89 1.02
DYNAMICO 6 116.20 34.53 56.08 1.14

MRP3 4 18.54 11.11 41.72 1.01
MRP5 6 193.35 96.85 33.27 0.99

Average: 38.49 1.05

Table 6. Performance of DECUBE(ESIS) on Standard Problems

15

Experiment (II) is an example of applying BIS chart analysis to new problems to predict the

performance of DECUBE. Two models in electric power system planning [3] are used. The first is

a problem in the economic dispatch of electric power generators to satisfy system demands and

constraints imposed by, for example, regulation and reserve margin requirements. The number of

blocks is equal to the number of generators to be dispatched. The characteristics of five test cases
are given in Table 7. In each case, the natural blocks in the LP are grouped into ten subproblems for

convenience.

Problem Blocks Rows Columns % Density

Actual Natural Coupling Total

EGDO17 10 17 8 295 431 0.57

EGD034 10 34 8 582 854 0.29

EGD051 10 51 8 869 1277 0.20

EGD085 10 85 8 1443 2123 0.12

EGD170 10 170 8 2878 4238 0.06

Table 7. Characteristics of the Electric Generation Dispatch Problems

Figure 6 shows the BIS chart of problem EGD051. In terms of the dispersion of proposals

and the complexity of the master problem relative to those of the subproblems, this picture is typical

of the five cases. In all of them, we observe that the master takes roughly two-thirds of the longest

subproblem time in the same cycle; that the proposals are widely spread; and that the subproblem

loads are rather uneven. By starting -die master problems early and incorporating proposals as they

are being generated, we expect ESIS to perform well on these problems.

PROBLEM p TSEQ TPAR(BIS) SPEED-UP EFFICIENCY

(CPU seconds) TSEO1TPAR (%)

EGDO17 11 3.23 1.16 2.78 25.27

EGD034 11 9.67 2.85 3.40 30.89

EGDO51 11 17.08 4.08 4.19 38.09

EGD085 11 41.76 7.68 5.43 49.41

EGD170 11 199.55 28.89 6.91 62.79

Average: 41.29

Table 8. Performance of DECUBE(BIS) on Electric Generation Dispatch Problems.

16

PROBLEM p TSEQ TPAR(ESIS) EFFICIENCY ESIS/BIS

(CPU seconds) M
EGDO17 11 3.23 1.23 23.82 0.94

EGDO34 11 9.67 2.72 32.34 1.05

EGDO51 11 17.08 3.73 41.66 1.09

EGDO85 11 41.76 7.07 53.68 1.09

EGD170 11 199.55 29.15 62.23 0.99

Average: 42.75 1.03

Table 9. Performance of DECUBE(ESIS) on Electric Generation Dispatch Problems.

Observe that the efficiency of parallel decomposition increases with the problem size in this

case. This is very promising for truly large-scale problems. It should be remarked that in general, it

is difficult to obtain such correlations. Our test problems from the electric generation dispatch model

illustrate this fact nicely because they are well controlled progressions in terms of dimensions and

complexity. Also, as suggested by the BIS chart, ESIS performs better than BIS (43% compared to

41% on the average).

The second electric power generation model is one in multiregion capacity expanasion
planning. Each block in the LP represents a region which has to select capacity additions that

minimize the present value of investment and operation costs subject to reserve margin, customer

load, capacity mix, land availability, fuel availability and emission constraints. The regions can

trade electric power among themselves. The coupling constraints state that net import and export
should be balanced. Again, five test cases are used. Their characteristics are given in Table 10.

Problem Blocks Couvling Rows Total Rows Columns %Density

MEGE02 2 15 349 614 1.29
MEGE04 4 15 679 1105 0.58

MEGE06 6 15 1011 1698 0.41

MEGE08 8 15 1343 2251 0.31
MEGEI0 10 15 1675 2847 0.25

Table 10. Characteristics of the Electric Generation Expansion Problems

17

Figure 5 shows the BIS chart for MEGE10. Note that before the first master is started (time
zero in the figure), each subproblem is solved to submit a proposal. For importing regions, this first
proposal contains all the information on the deficit in the region. In subsequent cycles, only
potential exporting regions will have new proposals describing what they can offer in response to
coordinating prices. In practice of course, regions may not have to be pure importers or exporters
over time. Our test problems are set up this way for simplicity of data generation. However, if this
assumption does hold, it can be used to great computational advantage by essentially releasing the
nodes corresponding to the importing regions.

Observe that the master times are trivial compared to the subproblem times in this model.
That means there is not much to gain at all by starting the master problems early. Therefore, we do
not expect ESIS to perform better than BIS on these problems. The results, as reported in Tables 11
and 12 respectively, show that indeed, the two information schemes are almost identical in this
case. Note also that while the problems progress in size, they represent diverse scenarios of various
complexities. Therefore, there is no obvious correlation between size and efficiency here.

PROBLEM p TSEQ TPAR(BIS) SPEED-UP EFFICIENCY
(CPU seconds) TSEO/TpAR (%)

MEGE02 3 8.45 7.26 1.16 38.81

MEGE04 5 13.13 7.74 1.70 33.96
MEGE06 7 17.24 5.81 2.96 42.36

MEGE08 9 24.83 7.11 3.49 38.82
MEGE10 11 33.29 7.46 4.46 40.55

Average: 38.90

Table 11. Performance of DECUBE(BIS) on Electric Power Expansion Problems.

PROBLEM p TSEQ TPAR(ESIS) EFFICIENCY ESIS/BIS

(CPU seconds) f(%)
MEGEO2 3 8.45 7.31 38.55 0.99

MEGE04 5 13.13 7.76 33.87 1.00
MEGE06 7 17.24 5.85 42.12 0.99
MEGE08 9 24.83 7.10 38.88 1.00
MEGE10 11 33.29 7.35 41.15 1.01

Average: 38.91 1.00
Table 12. Performance of DECUBE(ESIS) on Electric Power Expansion Problems.

18

Experiment (III) attempts to use DECUBE on larger problems and compare to some extent its

performance with that of an commercial LP code. We consider the class of production and

inventory optimization problems arising from material requirements planning. Typically, they
involve many end-products, each one comprising of many component parts. The parts, in turn, are
made up of other components, and so forth. The manufacturing or assembly of any component may

require certain limited resources such as machine capacity, labor hours, etc. Given the exogeneous

demands for the end-products as well as components (e.g. as spare parts) over a finite planning

horizon, the problem is to determine the minimum cost production and inventory schedule subject to

resource availability constraints. The block-angular LP model is well-known (see e.g. [9]).

However, the dimensions are found to be prohibitive in practice. For instance, the plannning of an

operation over 10 time periods with 30 end-products, each with an average of 100 parts, gives rise
to 30,000 constraints besides the coupling capacity constraints. While such problems can be solved

routinely on mainframe computers, the preferred environment for operations management is

typically in the range of mini- and supermini-computers. We have tested DECUBE on the iPSC/2

hypercube with MRP problems having up to the above stated dimensions. Prelimary comparison
with the performance of MPSX/370 on an IBM 3090-200E with vector support demonstrates that

distributed decomposition is indeed going to be a viable and cost-effective approach.

Five pairs of problems are used in the experiment. In each case, the first problem represents

9 capacities over 10 periods for a total of 90 coupling constraints. The second problem represents

19 capacities over 10 periods for a total of 190 coupling constraints. Each all cases, each block has

1000 rows. The characteristics of the MRP test problems are summarized in Table 13.

Problem Blocks Coupling Rows Total Rows Columns %Density

MRP05A 5 91 5091 14591 0.099
MRP 5B 5 191 5191 14691 0.156

MRP1OA 10 91 10091 29091 0.050

MRP1OB 10 191 10191 29191 0.080

MRP15A 15 91 15091 43591 0.034

MRP15B 15 191 15191 43691 0.054

MRP2OA 20 91 20091 58091 0.025

MRP20B 20 191 20191 58191 0.054

MRP30A 30 91 30091 87091 0.017

MRP30B 30 191 30191 87191 0.027

Table 13. Characteristics of the Material Requirements Planning Problems

19

PROBLEM p TSEQ TPAR(BIS) SPEED-UP EFFICIENCY

(CPU seconds) TSEO/TPAR %

MRPO5A 6 2109.64 467.16 4.52 75.26

MRP05B 6 2484.91 527.62 4.71 78.49

MRP10A 11 4104.56 517.05 7.94 72.17

MRPlOB 11 4972.55 566.18 8.78 79.84

MRP15A 16 6075.21 531.30 11.43 71.47

MRP15B 16 7141.52 574.02 12.44 77.76

MRP20A 21 8141.63 586.34 13.89 66.12

MRP2OB 21 10554.27 869.14 12.14 57.83

MRP30A 31 11864.22 561.85 21.12 68.12

MRP30B 31 15555.75 780.25 19.94 64.31

Average: 71.14

Table 14. Performance of DECUBE(BIS) on MRP Problems

From Table 14, we observe that DECUBE attained very impressive efficiency (an average of

71% over the ten cases) with this class of problems. As expected, an increase in coupling

constraints makes the problem more difficult. However, for both the A- and B-series, the inferred

sequential solution time (TSER) grows only (approximately) linearly with the problem size (in

terms of total rows). The actual parallel times (TPAR) show that most of the effect of even the linear

growth is offset by the efficiency of distributed computation. ESIS turns out to be inferior to BIS

for most cases in this set and is omitted.

In order to compare this performance with a commercial LP code on a mainframe

supercomputer, we use IBM's MPSX/370 version 2 [11] on an IBM 3090-200E. The vector

capability of the machine is exploited by the LP code. The results are listed in Table 15. Note that

the solution time grows approximately quadratically in the problem size for MPSX1370. On the

largest problems tested, DECUBE is four to five times faster. Also, there is a limit of 32768

constraints for MPSX/370 version 2. Therefore our experiment is already approaching its capacity.

On the other hand, DECUBE can be further extended to handle even larger problems. Given the fact

that the mainframe costs ten to twenty times as much as the hypercube, our results clearly

demonstrate viability of the distributed decomposition approach.

The timing results reported do not include problem generation and data input. For large

problems such times are substantial and may actually become the dominant factor in the total

turn-around time. For example, using the host machine on the hypercube, it takes approximately 4

20

minutes to generate and down load each subproblem in MRP30A. With 30 subproblems, this data

processing phase takes 2 hours compared to the solution time of under 10 minutes. However, the

subproblems can be generated directly on the node machines in parallel reducing the data processing

time to 4 minutes.

Code DECUBE. MPSX/370 V2

on Intel iPSC/2-d6 IBM 3090-200E
PROBLEM (CPU minutes)

MRP05A 7.79 1.92
MRPIOA 8.62 6.43

MRP15A 8.85 14.45

MRP20A 9.77 25.45

MRP30A 9.36 55.44

MRP05B 8.79 1.84

MRP1OB 9.44 7.43

MRP15B 9.57 16.96

MRP2OB 14.49 31.82

MRP30B 13.00 51.10

Table 15. Comparison of DECUBE and MPSX/370

6. Discussion

The decomposition of block-angular linear programs is a natural candidate for distributed
computation using the lastest development in multicomputers. We have shown very promising

initial results with DECUBE, an implementation on an Intel iPSC/2 hypercube computer with 64
processors. The prototype software can be used to further study the dynamics of information in

decomposition algorithms. It also serves as a demonstration of the potential cost-effectiveness of

multicomputers for important classes of applications such as material requirements planning. We

have shown that in the latter case, DECUBE can significantly outperform conventional software on
relatively expensive supercomputers.

21

Acknowledgement

The authors are indebted to Tom Dunigan and Michael Heath of Oak Ridge National

Laboratory for providing access to the iPSC/2 system; and Don Broach for consultation on the IBM

3090 system. Discussions with Tak Lee and R.P. Sundarraj have been very helpful. Part of this

work was conducted while the first author was visiting scholar in the Department of Operations

Research at Stanford University during the Winter and Spring quarters of 1988. He wishes to thank

George Dantzig and Robert Entriken for stimulating discussions.

References

[1] G.B. Dantzig and P. Wolfe, 'The decomposition principle for linear programs", Operations

Research 8 (1960) 101-111.

[2] D. Dewitt, R. Finkel and M. Solomon, "The CRYSTAL multicomputer: design and

implementation experience", IEEE Transactions on Software Engineering 8 (1987) 953-966.

[3] Electric Power Research Institute, "Decomposition of linear programs using concurrent

processing on multicomputers", RP1999-11 Final Report, April, 1989.

[4] J.K. Ho, "Recent advances in the decomposition approach to linear programming",

Mathematical Programming Study 31 (1987) 119-128.

[5] J.K. Ho and T.C. Lee, "Dynamics of information in distributed decision systems", March

1989 (submitted to Management Science).

[6] J.K. Ho, T.C. Lee and R.P. Sundarraj, "Decomposition of linear programs using parallel

computation", Mathematical Programming 42 (1988) 391-405.

[7] J.K. Ho and E. Loute, "An advanced implementation of the Dantzig-Wolfe decomposition

algorithm for linear programming", Mathematical Programming 20 (1981) 303-326.

[8] J.K. Ho and E. Loute, "Computational aspects of DYNAMICO: a model of trade and

development in the world economy", Revue Franfaise d'Automatique, Informatique et

Recherche Opdraionelle 18 (1984) 403-414.

22

[9] J.K. Ho and W.A. McKenney, "Triangularity of the basis in linear programs for material
requirements planning", Operations Research Letters 7 (1988) 273-278.

[10] J.K. Ho and R.P. Sundarraj, DECOMP: an Implementation of Dantzig-Wolfe Decomposition

for Linear Programming, (to be published by Springer-Verlag, New York.)

[11] IBM Corporation, MPSX/370 Version 2 Program Reference Manual, SH19-6553, 1988.

[12] Intel Corporation, iPSC/2 Fortran Programmer's Reference Manual, Order No. 311019-003,
August, 1988.

[13] Intel Corporation, iPSC/2 Green Hills Fortran Language Reference Manual (Preliminary),

Order No. 311020-003, August, 1988.

[14] T.C. Lee, Distributed Optimization of Linear Programs using Dantzig-Wolfe Decomposition,
Ph.D. Dissertation, University of Tennessee, 1988.

23

+ + +*

+ + + +

+ +

*+ *~
++

+ .4

+ 0
C3

0

+: +3 E 0

++ + 8n

+ p*+ 4 +.4
CDt

* .0

>1 +

+ 1: -

++

*mm

4 $

+9

+4

+

+9 + 4

* + +

+ + +

m + +

4++ + +)

Li i

4.

1'0
cqns

+ + - N

+

++

cv

+ +

+ + + +-
+ +- +

+0 + ++ + +D
++ + + n+ + $

+ + E

+ + 4-

+ E 4.
. .,

* 0

0 a

1-4

0

0

4D:V

+ ++

+ ++ 4
+ + +l +

+

+ +

+ +3

+ + *# + +

+ +- + + + + + + +

* + * + + *= + + = * +

o0 6 9 1 9 S I , E I 0
qns

SECURITY CLASSIFICATION OF THIS PAGE (Won DMa ,ftfmEd)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMSER 9.OVT ACCESSION NO, 1. RECIPIENT'S CATALOG NUMDER

MSP-89-3 r
4. TITLE (end Subtlefe) S. TYPE OF REPORT A PEO0 COVEZREO

Distributed Decomposition of Block-Angular
Linear Programs on a Hypercube Computer 6. PERFORMIO ORG. R9PORT NUM99E

7. AUTHOR(o) 8. CONTRACT OR GRANT NUNISEti(e)

James K. Ho
S. Kingsley Gnanendran N00014-89-J-1528

S. PERFORMINo ROANIZATION NAME AND ADDRESS 0. PR RAM ELEMENT. PROJECT. TASK
University of Tennessee, College of Bus. Admin.
Management Science Department
615 Stokely Management :Center
Knoxville, TN 37996-0562

fi. CONTROLLING OFFICE NAME AND AODRESS it. RttPORnT OATE
Office of Naval Research July 1989
Department of the Navy
80U N. Quincy Street IS. NUMBER Of PAGES

Arlington VA 22217-5000 25 pages
14. MONITORING AGENCY NAME 4 ADDRESSQfI different hem Confrollind Offie) iS. SECURITY CLASS. (of OIl ePe.j)

ISa. DECL ASSIFICATION/IDOWNGRADING
SCHEDULE

IS. DISTRIOUTION STATEMENT (of this Reper()

17. DISTRIBUTION STATEMENT (.1 lo are• faeg entered I• Slos,
", If llrl| A Rlpoof)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Cenove on ereft** side It neeoemr aed # f I V Ib lock embo)

20. AIM RACT (Conflnuo an revferse lde it nee.oime lndeutlfr by We& Rub..)
Algorithms based on the Dantzig-Wolfe decomposition principle for linear
programs are implemented on an Intel iPSC-2 Hypercube computer with
64-processors. Computational results with block-angular linear programs from
diverse applications are reported. They indicate that the approach of dis-
tributed computation on relatively inexpensive multiple processor computers
may be very cost-effective for large, structured linear programs. It is
also shown that by studying certain characteristics of the interaction

..mong the master and subproblems, one can select algorithms that

DD , WA'", 1473 eDON o I mov es is OsoLte
S/N 0102- LF- 014. 6601 SEC URITY CLASSIFICATION OF THIS PAGE (S1=. DI otffm

SECURITY CLASSIFICATIOH Of THIS PAGE (Menl De0 BOW@*

best exploit the parallel processing environment.

S/M 0107- Lr-O04. v01

SECURWITY CLASIFICAION MF ~THIS P~rf4169 00mm, E*00#0d)

